C.U.SHAH UNIVERSITY Summer Examination-2017

	Subject 1	Name	: Mathe	matics-	1						
	Subject	Code	: 4SC01N	1AT1/4	SC01MTC1	_	Branch	: B.Sc(All)		
	Semester	r :1	Da	ate :2	4/03/2017		Time : 1	0:30 To	1:30	Marks: 70	
	Instructio	ons:	D		1 1 . 0		.1 1			1.11.1	
	(1) (Jse of	Programn	nable ca	alculator &	any	other elec	ctronic in	strument 1	s prohibited.	
	(2) I	nstruc	tions writt	ten on n	nain answe	er bo	ok are stri	ctly to be	e obeyed.		
	(3) I	Jraw n	leat diagra	ims and	l figures (1)	nec	essary) at	right pla	ces.		
	(4)	Assum	e suitable	data 11	needed.						
Q-1		Atte	mpt the fo	ollowin	g question	is:					(14)
	a)	Defin	ne : Square	e matrix	x.						(1)
	b)	If f(x)=sinx the	en mach	nlaurin's se	eries	of $f(x) =$				(1)
	c)	True	false : Ma	achlauri	in's series	is pa	rticular ca	se of Ta	ylor's seri	les .	(1)
	d)	Can	you apply	Roll's	theorem fo	or the	e function	$\mathbf{f}(\mathbf{x}) = \mathbf{x} $	-1 in [0), 2]. Give the	(1)
		reaso	on of your	answer	·?						
	e)	What	t is singul	lar mat	rix ?						(1)
	f)	If A	is 3 x 5 m	natrix ar	nd B is 5 x	5 m	atrix then	What is o	order of A	.B ?	(1)
	g)	True	false :Eve	ery skev	w- symmet	ric n	netrix mus	st have al	l diagonal	entry zero.	(1)
	h)	If A=	$\begin{bmatrix} 3 & -2 \\ 6 & 4 \end{bmatrix}$, What	is adjoint	of A	?				(1)
	i)	Write	e an exam	ple of 3	Symmetric	mat	rix.				(1)
	j)	What	t is degree	of diff	erential eq	uatio	on?				(1)
	k)	Give	an examp	ole of e	xact differ	entia	l equation	l.			(1)
	l)	True	false : Ev	ery squ	are matrix	is in	verible.				(1)
	m)	Write	e an exam	ple of 1	partial diff	erent	tial equation	on with c	order one a	nd degree one.	(1)
	n)	Solve	$e: y^2 dy +$	$+x^2 dx =$	= 0.						(1)

Attempt any four questions from Q-2 to Q-8

Q-2		Attempt all questions	(14)
	a)	Define : Invertible matrix .	(2)
	b)	Find inverse of $\begin{bmatrix} 5 & 4 \\ 5 & 5 \end{bmatrix}$.	(4)

c) If
$$A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 2 & 3 \\ -1 & 1 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -3 & 4 \\ -7 & 5 & 5 \\ -3 & 4 & 5 \end{bmatrix}$, then find (i) A^2 (ii) B^2 . (8)

Is
$$A^2 - B^2 = (A+B)(A-B)$$
?

Page 1 || 3

Q-3	a)	Attempt all questions What is normal form of the matrix ?					
	b)	If $A = \begin{bmatrix} 2 & 4 & -2 & 4 \\ -3 & -6 & 3 & -6 \\ 1 & 0 & 0 & 1 \end{bmatrix}$, then find rank of matrix A.	(4)				
	c)	Discuss the consistency problem for the system x - y + z = 1 2x-y+2z = 2 x+y+3z = 3.	(8)				
Q-4	a)	Attempt all questions Define Eigen vector of the matrix .	(14) (2)				
	b)	Find the Eigen value of	(4)				
		$\begin{bmatrix} 1 & 0 & 0 \\ 4 & -1 & 0 \\ 2 & 6 & 5 \end{bmatrix}.$					
	c)	Write the statement of Caley –Hamilton theorem also verify it for the matrix $\begin{bmatrix} 2 & -1 & 2 \\ 5 & 2 & 2 \\ 1 & -2 & -2 \end{bmatrix}$.	(8)				
0-5		Attempt all questions	(14)				
Q U	a)	Define homogeneous differential equation.	(14)				
	b)	Solve $(5x+3y-6) dx + (3x+5y+4) dy=0$.	(4)				
	C)	What is linear differential equation in y? solve: $\cos^2 x \frac{dy}{dx} + y = \tan x$	(8)				
Q-6	a)	Attempt all questions	(14)				
	a)	$f(x)=x^2-5x+6$ in [2, 3].	(7)				
	b)	State Cauchy's mean value theorem and verify it for the functions $f(x) = (x - 1)^2$	(7)				
		$g(x) = x (x - 1)^3$, where $x \in [0, 2]$.					
Q-7		Attempt all questions	(14)				
	a)	Find order and degree of the following ODE. $(4x)^{5}$	(2)				
		$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) + \frac{y}{\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} + 1 = -1 \; .$					
	b)	Evaluate	(4)				
	-	$\lim_{x \to 0} \frac{\log x^2}{\cot x^2}$					

Page 2 || 3

c) Solve:
(1)
$$\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$$

(2) $y = 2px + y^2p^3$.
Attempt all questions
(14)
(14)
(2) What is Cartesian coordinates for the points (2,-60°)?
(2)

(6)

b) Evaluate the following :

Q-8

(1)
$$\lim_{x \to 1} \left(\frac{1}{\log x} - \frac{1}{x-1} \right)$$

(2)
$$\lim_{x \to 0} \frac{1 - \cos x^2}{x^2 \sin x^2}$$

c) State Lagrange's mean –value theorem
$$f(x) = x(x-1)(x-2)$$
 on $[0, \frac{1}{2}]$. (6)

